Polyphosphoinositides are enriched in plant membrane rafts and form microdomains in the plasma membrane.
نویسندگان
چکیده
In this article, we analyzed the lipid composition of detergent-insoluble membranes (DIMs) purified from tobacco (Nicotiana tabacum) plasma membrane (PM), focusing on polyphosphoinositides, lipids known to be involved in various signal transduction events. Polyphosphoinositides were enriched in DIMs compared with whole PM, whereas all structural phospholipids were largely depleted from this fraction. Fatty acid composition analyses suggest that enrichment of polyphosphoinositides in DIMs is accompanied by their association with more saturated fatty acids. Using an immunogold-electron microscopy strategy, we were able to visualize domains of phosphatidylinositol 4,5-bisphosphate in the plane of the PM, with 60% of the epitope found in clusters of approximately 25 nm in diameter and 40% randomly distributed at the surface of the PM. Interestingly, the phosphatidylinositol 4,5-bisphosphate cluster formation was not significantly sensitive to sterol depletion induced by methyl-beta-cyclodextrin. Finally, we measured the activities of various enzymes of polyphosphoinositide metabolism in DIMs and PM and showed that these activities are present in the DIM fraction but not enriched. The putative role of plant membrane rafts as signaling membrane domains or membrane-docking platforms is discussed.
منابع مشابه
Arabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases
The hydrophobic proteins of plant plasma membrane still remain largely unknown. For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...
متن کاملLipid rafts, caveolae, and their endocytosis.
Lipid rafts are plasma membrane microdomains enriched in cholesterol and sphingolipids that are involved in the lateral compartmentalization of molecules at the cell surface. Internalization of ligands and receptors by these domains occurs via a process defined as raft-dependent endocytosis. Caveolae are caveolin-1-enriched smooth invaginations of the plasma membrane that form a subdomain of li...
متن کاملInvolvement of glycosphingolipid-enriched lipid rafts in inflammatory responses.
Glycosphingolipids (GSLs) are membrane components consisting of hydrophobic ceramide and hydrophilic sugar moieties. GSLs cluster with cholesterol in cell membranes to form GSL-enriched lipid rafts. Biochemical analyses have demonstrated that GSL-enriched lipid rafts contain several kinds of transducer molecules, including Src family kinases. Among the GSLs, lactosylceramide (LacCer, CDw17) can...
متن کاملMembrane microdomains, rafts, and detergent-resistant membranes in plants and fungi.
The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existenc...
متن کاملLipid rafts in neuronal signaling and function.
Lipid rafts are plasma membrane microdomains rich in cholesterol and sphingolipids, which provide a particularly ordered lipid environment. Rafts are enriched in glycosylphosphatidylinositol (GPI)-anchored proteins, as well as proteins involved in signal transduction and intracellular trafficking. In neurons, lipid rafts act as platforms for the signal transduction initiated by several classes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 152 4 شماره
صفحات -
تاریخ انتشار 2010